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Abstract
With increasing accessibility to spatio-temporal correlations
in urban data, it is possible to extend previous research meth-
ods in the urban context. By collecting and utilising this
information, novel improvements to public security and ur-
ban computing techniques can be examined. The utilisation
of spatio-temporal data for improved crime prediction has
previously been examined on a framework created purpose-
fully for that task, but few attempts have been made with
freely available open source Machine Learning models for
the same task. By incorporating spatio-temporal correlations
in a simple way to the examined dataset, some open source
Machine Learning models performed really well on the crime
prediction task. We concluded that weekly correlation had a
higher impact on the performance of the predicting models
than the daily correlation, showing a slightly improved score.
We have also discovered that the spatial correlation had a
higher affect on performance than the temporal correlation
in regards of predicting crimes in New York City.

Keywords: Crime Prediction, Spatio-Temporal Correlation,
Supervised Learning, Machine Learning

1 Introduction
With a majority of the human population living in urban
areas around the word, improved and effective public secu-
rity is essential. Crimes are highly affecting society and the
ability to predict it entails large benefits for urban life. Crime
prediction is related to sustainable urban development and
citizen’s life quality [19]. Crime and neighbourhood disorder
have also been shown to correlate negatively to the health
of urban residents [2], making the task of crime prediction a
focus area in order to reduce the crime rate in a city. Some of
the benefits of better understanding crimes includes targeted
and more sensitive practices by the law enforcement in a city,
making them able to mitigate the crime to a higher extent [1].

A lot of previous research regarding crime prediction are
based on demographic data, but a major drawback with it is
that it is difficult to achieve high "granularity" in communi-
ties since demographic features are relatively stable over an
extended period and shared among several communities [19].
With increased collection of big data in an urban context,

new sources and new models are applicable and examined
to help improve the task of crime prediction [1]. Beyond
urban data sources and demographic data, it has been shown
that considering both time and location when predicting the
crime rate has a positive impact on the prediction accuracy
[19]. Moreover, the usage of Machine Learning techniques to
predict crime events have increased significantly with recent
model and accuracy developments [2]. Attempts to utilise
spatio-temporal data and Machine Learning for crime pre-
diction tasks have been investigated on other large cities in
USA, such as Neural Network regression in Baltimore [2] and
a comparative research of Naive Bayes, Support Vector Ma-
chines, Gradient Boosted Decision Trees and Random Forests
for crime prediction and classification in San Francisco [1].
Another research paper was modelling spatio-temporal cor-
relations by proposing a brand new model to predict crime
rates in New York city [19], which is most inspiration has
come from. Instead of using their proposed model (so called
the TCP framework), our aim is to try out different open-
source supervised Machine Learning techniques offered by
scikit-learn [15] to answer our first research question on
similar settings:

How well does an open source accessible supervised
ML model perform on a crime prediction task of a year
in New York City while incorporating spatio-temporal
correlations?

Themodels investigated for this taskwill be ensemblemethod
Gradient Tree Boosting Regressor [8], Support Vector Ma-
chine Regression [14], Neural Network Regression [11], Ran-
dom Forest Regression [13], Nearest Neighbours Regression
[10] and Lasso [9]. These models will be compared on the
same examined dates and location as the TCP framework
[19] with some of the same data-sources, further explained
in section 2. Once the optimal model have been selected, we
will additionally investigate how much importance the dif-
ferent data-sources have on the crime prediction. The paper
Modelling Temporal-Spatial Correlations for Crime Prediction,
hereafter referred to the "baseline paper", proposes the TCP
framework [19] and use several data sources from a variety
of different fields and no extensive feature selection anal-
ysis. That proposes a small investigation of the used data
sources and their contribution towards the result for the
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task of crime prediction, which our second research question
aims to answer:

How does the chosen features affect the aRMSE of the
crime prediction task?

After the upcoming section of previous work, the data gath-
ering and preprocessing will be further explained in section
2. In section 3 the problem is conceptualised and modelled,
followed by an explanation of the chosen Machine Learning
models for the task. Section 4 presents the results and section
5 will cover a discussion over the results and suggestions
for further work. The paper ends with the conclusions and
acknowledgements in section 6.

1.1 Previous work
The baseline paper Modelling Temporal-Spatial Correlations
for Crime Prediction is the primary source of inspiration for
this project [19]. The proposed framework TCP is imple-
mented as follows: divide New York City into regions and
assigning the features in the data to the different regions for
a specific time slot. Then create a weight matrix to incorpo-
rate the spatio-temporal correlations and train the matrix on
the previous time slots.
The features used to train the model consists of data from
public security sources (2 pcs), meteorological sources (30
pcs), Points of interest in that region, human mobility (2
pcs) and public service complaints. The paper examines the
intra-region temporal correlations; i.e. how much the crime
rate differs between different time slots in a specific region,
as well as the inter-region spatial correlation; how much spa-
tial closeness affect similarity in crime rate for a given time
slot. The framework was created to incorporate these spatial-
temporal correlations and motivated by comparing average-
Mean-Root-Squared-Error (aRMSE), partially displayed below
in table 1, to other representative baselines models. All tech-
niques performed better for short-term prediction, but the
TCP framework outperforms all the other baseline models
used. TCP is also more robust for distant future predictions
compared to the other models and the conclusion is that
spatio-temporal correlations can help crime prediction [19].
Unfortunately, neither the data used in the paper nor the
code implementing the TCP framework are available online
for full comparison.

Table 1. Performance in terms of aRMSE by [19]

1-day 7-day
Lasso 2.8210 3.3956
TCP 1.7205 1.7791

Another research project examined the use of deep learning
models, namely Convolutional Long-Short Term Memory
Neural Network (CLSTM-NN), to model spatio-temporal cor-
relations for the task of crime prediction [2]. The data was
gathered only from one data source, covering for e.g. the

type of crime, the date and time of its occurrence as well
as its longitude and latitude. Similarly to the baseline paper
examining New York City, the model predicts the crime rate
based on features in the format of matrices, where each ele-
ment of the matrices represent the number of crimes within
a region defined by its location. The model captured tem-
poral correlations by adding the feature matrices of several
days back, concluding the best accuracy was obtained by not
considering more than 5 days in advance. The use of past
7-days lead to a slight overfitting of the model for some of
the parameters in the neural network tested. Once again,
one of the conclusions were that spatio-temporal resolutions
are relevant in the performance of the model [2].

Additionally, the task of predicting crime classes have been
examined with spatio-temporal as well as demographic data
in the city of San Francisco [1]. The model aims to classify
the category of crime based on the time, place and demo-
graphic data. The classification models tested for this task
was Naive Bayes, Random Forests, Support Vector Machines
and Gradient Boosted Decision Trees. By collapsing some
the crime categories into a fewer number of categories, Gra-
dient Boosted trees and Support Vector Machines had the
highest accuracy. The Gradient boosted trees achieved an
maximum accuracy of 96% and 75% for two different exam-
ined classes and the support vector machine obtained 96%
and 62% [1].This paper did however not use a grid to repre-
sent any inter-regional or intra-temporal correlations like
the previous two projects.

2 Data
In order to model comparability with the baseline paper
Modelling Temporal-Spatial Correlations for Crime Prediction,
we have decided to use some of the data sources that they
found. The data sources are:

• 311 Public-Service Complaint Source: This dataset
contains the non-urgent complaints made by the pub-
lic to the city, using the 311 phone number [4]. This
data is available for free on the city of New York web-
site.

• Public Security Data: This will be in the form of
New York Police Department (NYPD) Stop and Frisk
(SAF) reports filled by the department. This data is
submitted to the public by the city of New York, and
is filled by agents after they have performed a light
body search on an individual (frisk) [5]. We will also
be using the NYPD Complaint Data Historic. This
dataset includes all valid felony, misdemeanour, and
violation crimes reported to the NYPD [6].
Both of these sources are available for free on the city
of New York website.

• Human Mobility: This data will be in the format of
Taxi Pick-up and Drop-off points. This data is made
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available by the NYC Taxi and Limousine Commission
[17]. This data incorporates pick-up/drop-off points
for taxi trips, and includes the trip distances, itemized
fares, rate types, payment types, and driver-reported
passenger counts. For this project, we will only be
using the passenger count and trip fares.

Following the structure of the baseline paper, we have de-
cided to look into the correlation of crime and region on a
specific time-frame, selecting the start date as the 1st of July
2012, and the end date as the 30th of June 2013. This gives us
a total of 365 days. This will cover the temporal factor. When
it comes to the spatial factor, the baseline paper divided New
York into 2𝑘𝑚 × 2𝑘𝑚, and achieved a total of 133 regions.
After some personal experimentation, we reached a total of
254 regions following the same operation. Furthermore, we
decided to only use the regions that contained data for the
NYPD Complaints, as this sources will be used as label value.
This means that in the end, we have a total of 254 regions.
This can be observed in figure 1, where the greyed cells will
be ignored and the cells covering NYC will be used.

230

-1

22

Figure 1. New York City divided in 2𝑘𝑚 × 2𝑘𝑚 regions.

2.1 Data cleansing
Like previously mentioned, the baseline paper [19] only re-
ferred to their data sources. This meant that we had to fetch
and pre-process the data ourselves, as it would be unusable
without some prior pre-processing. This statement is further
justified by the size of some of our data sources, namely the
taxi data, which contained an average of 15,000,000 rows
per month. Firstly, the data would need to be filtered for the
desired time-range.

Secondly, all datasets used coordinate points but they did
not all use the same format. Some datasets used the State
Plane Coordinates System (SPCS) format. This format, which
is proper to the United States [16], represents coordinates
in the form of [x,y] values. The 311 complaints, stop and
frisk reports and NYPD complaints datasets were all in this
described format. The taxi data on the other hand used a
longitude-latitude format. As the SPCS format was predomi-
nant across our data sources, we decided to apply this format
to all other sources. This operation was performed using the
Python library pyproj, which enables the projection of lon-
gitude/latitude to a specified SPCS plane by using the EPSG
Geodetic Parameter Dataset [3]’s codes for World Coordi-
nates (EPSG:4326) and New York Long Island (EPSG:2263).
This process was rather long, as the taxi dataset was very
large and contained a total average of 175,000,000 rows. Once
the coordinates were modified to the right format, we were
then able to index them using a modulo operation to place
them on a grid of NYC. Indexing the entries with this method
ensures that an entry is in the correct range [-1 to 22] for
the y axis, and [0 to 23] for the x axis.

2.2 Data Grouping and Merging
Once all the datasets were processed and formatted, we were
able to group them by date and coordinates. For the 311
complaints, the stop and frisk reports and the NYPD com-
plaints, the entries can be counted to represent a number
of complaints or reports for a specific day at a certain co-
ordinate point. As mentioned in the data sources (section
2), we wanted to exploit the passenger count and the trip
fare from the taxi dataset. Instead of counting the entries,
we summed the values for passenger count and trip fares
based on date and coordinates. We separated the pick-up
entries and drop-off entries, as they could indicate different
information in terms of spatial factors.
After the grouping of each datasets, we were easily able to
merge them on their shared axes (date and coordinate).

3 Proposed Model
The data was formatted in a similar fashion to the baseline pa-
per and incorporating the spatio-temporal correlations was
adjusted accordingly. Once this have been more extensively
explained in section 3.1, the different Machine Learning mod-
els picked for the regression task will be further explained
and motivated in section 3.2. Finally, this section will be con-
cluded with the measures taken to prevent overfitting of the
examined models.

3.1 Problem formulation
New York City is divided into 𝑅=254 regions, and the inves-
tigated time-span of 1 year is divided into 𝑇=365 time slots.
Y𝑡
𝑟 denotes the number of crimes in region 𝑟 at time 𝑡 , and

X𝑡 = [X𝑡
1,X

𝑡
2, ...,X

𝑡
𝑟 ] is the feature matrix of all regions in
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time slot 𝑡 .

In order to capture the spatial correlations, the model will
consider the neighbours information (X𝑡 ,Y𝑡 ) denoted N𝑡

𝑗

where 𝑗 ∈ 𝑁,𝑊 , 𝐸, 𝑆 (direction of neighbour; North, West,
East, South, and ignore the diagonal neighbours) as addi-
tional features to model the crime rate Y𝑡

𝑟 :
𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (X𝑡

𝑟 , 𝑁
𝑡
𝑁 , 𝑁

𝑡
𝑊 , 𝑁 𝑡

𝐸, 𝑁
𝑡
𝑆 ) = Y𝑡

𝑟 (1)
The model will also incorporate the temporal correlations by
considering the 𝑙=lag previous days information (X𝑡−𝑙

𝑟 ,Y𝑡−𝑙
𝑟 )

features and the crime rate as additional features to model
the crime rate Y𝑡

𝑟 :

𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (X𝑡
𝑟 ,X

𝑡−𝑙
𝑟 ,Y𝑡−𝑙

𝑟 ) = Y𝑡
𝑟 (2)

Making the final model incorporating both the spatial and
temporal correlations:

𝑓 (X𝑡
𝑟 , 𝑁

𝑡
𝑁 , 𝑁

𝑡
𝑊 , 𝑁 𝑡

𝐸, 𝑁
𝑡
𝑆 ,X

𝑡−𝑙
𝑟 ,Y𝑡−𝑙

𝑟 ) = Y𝑡
𝑟 (3)
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Figure 2. Visualisation of model incorporation of the spatio-
temporal correlations

3.2 Model selection
Several "baseline" open source supervised machine learning
models from scikit-learn [15] were tested with the default
parameters. The regression versions of the aforementioned
classification models for crime prediction in San Francisco
[1] were all tested (excluding Naive Bayes as it is principally
used as a classification model). A simple Neural Network
was also tested based on the deep neural network model
suggested for a similar crime prediction task in Baltimore
[2].

3.3 Model Tuning
Initially, all features need to be numerical in order for the
regression models to be able to compute their results. The
dates were converted into UNIX timestamps, and the indexed
regions were separated into two features; one feature cover-
ing the x-axis and another one covering the y-axis.

Standardizing the data during preprocessing is also often
necessary for some machine learning models [12]. Hence, all
models were tested in a pipeline first applying a standard-
izer from scikit-learn [12]. The first one, StandardScaler,
was chosen based on its simplicity and high performance.
Another data preprocessor Normalizer available from scikit-
learn was also tested to examine the need for a scaling in this
project. During the tuning of the models, very low aRMSE
values were found for some of themodels despite no hyperpa-
rameter tuning. The first tuning attempt was made with only
a train_test_split [7], providing the results presented in
table 3 in section 4. The result was further cross-validated by
applying a ShuffleSplit [7] consisting of 5 independent
splits of testing and training data for some of the models,
presented in table 4.

3.4 Model Evaluation
The metric used to evaluate the models is the average-root-
mean-squared-error, referred here as aRMSE, similar to the
baseline paper[19]. This metric is commonly used to evaluate
regression models. For baseline evaluation, a "dummy" re-
gressor has been created and compared to the other models.
This "dummy" regressor simply takes the number of NYPD
crime complaints from the previous day as its prediction (or
seven days prior, for the seven-days lag dummy).

4 Results
Firstly, we applied the scaling methods mentioned in section
3.3 to the data with a 1-day lag to examine potential benefits.
Those results can be viewed in table 2. Looking at the aRMSE
values returned by those models, we can see that using a
pipeline did not greatly improve the results of the Gradient-
BoostingRegressor, nor the results of the RandomForestRe-
gressor. Applying the StandardScaler to those models did
not have a significant impact on the aRMSE score, and is not
great enough to motivate using a pipeline as it removes the

Table 2. Performance in terms of aRMSE for some models with different preprocessing steps for 1-day lag

Model No pipeline StandardScaler Normalizer
GradientBoostingRegressor 0.0020 0.0020 43.694
RandomForestRegressor 0.0105 0.0065 29.9667

SVR 76.5317 2.1776 76.5275
Lasso 0.0249* 1.0548 69.8160

KNeighbourRegressor 39.2322 3.8080 20.5271
MLPRegressor 4.0e11 0.7294 50.7594
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possibility of comparing the performance with the "dummy"
regressor, explained in section 3.4. The Lasso model was also
in the best performing model, but during our experimen-
tation, Lasso raised a ConvergenceWarning, which signals
that the model did not converge. Thus it would be misleading
to consider this model among the best-performing.

By running the selected models on the training data obtained
from train_test_split, the following result were obtained
for the two different examined lags:

Table 3. Performance in terms of aRMSE for tested models

Model 1-day 7-day
GradientBoostingRegressor 0.0020 0.0013

RandomForestRegressor 0.0105 0.0052
SVR 76.5317 72.3758

Lasso** 0.0249 0.0246
KNeighboursRegression 39.2322 39.5818

MLPRegressor 4.0e11 3.5e11
dummy Regressor 19.3845 20.0013

From the baseline paper [19], the TCP framework outper-
formed the LASSO model significantly with aRMSE-values
of 1.72 for 1-day lag and 1.78 for 7-day lag in the baseline
paper as shown in table 1 above. Since it is not clear if they
used a pipeline for their models or not, it is impossible to
compare their results of Lasso to ours. The results they ob-
tained are however lower than two of our tested models in
table 3; GradientBoostingRegressor and RandomForestRe-
gressor, despite no hyperparameter tuning. It does need to be
specified that our attempt of capturing the spatio-temporal
relationship of the data differs a bit from the baseline pa-
per [19], as we aimed for simpler framework and a smaller
amount number of features.

To minimise the risk of overfitting the models, the highest
performing models were also tested with a ShuffleSplit
cross-validator for 1-day lag, providing similar results in ta-
ble 4 below. The differences between tables 3 and 4 are very
small.

Table 4. Performance in terms of aRMSE for some models
with ShuffleSplit for 1-day lag

Model aRMSE
GradientBoostingRegressor 0.0123
RandomForestRegressor 0.00318

To enable a feature analysis with the optimal model; Gradi-
entBoostinRegressor, a correlationmatrix covering a selected
amount of features was calculated in figure 3 below. Visualis-
ing all 45 features included in the data would not be feasible,

Figure 3. Visualisation of feature correlations

so the features for neighbours and lag except for their actual
NYPD value (the label) was ignored.
The correlation matrix in figure 3 displays that the number
of stop-and-frisks (SAF), 311 complaints and the lag NYPD
complaints seem to highly seem to correlate to each other
the most. In order to investigate how important the different
features in our data are for the model to predict the crime
rate, the best performing model according to table 3 above
was also tested with a subsets of the features. The results
are displayed in table 5 where all features containing any
of the specified information, both for the examined day, its
neighbours and the lag, are removed.

Table 5. Performance in terms of aRMSE for different fea-
tures subtracted for GradientBoostingRegressor

Data subtraction 1-day 7-day # features
all SAF features 0.0018 0.0014 39
all 311 features 0.0018 0.0014 39
all taxi features 0.0019 0.0011 22

all neighbour features 0.0021 0.0013 17
all lag features*** 0.0018 0.0013 38

The difference in aRMSE between the tables 3 and 5 are
minimal. Only one feature subtraction seem to decrease the
accuracy, namely the neighbouring features. The number
of features considered in the model, 17, are however signifi-
cantly smaller than the original 45. Removing all lag features,
in this model incorporating the temporal correlations, seem
to reduce the aRMSE more. The difference here between 1-
day and 7-day for all lag features (***) in table 5 stem from the
different divisions used during train_test_split, where
different indexes were chosen for training data for lag=1 and
lag=7. Similar to the close correlation between stop-and-frisk
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(SAF) and 311 displayed in figure 3, the difference in aRMSE
between removing all SAF features or all 311 features, are
negligible.
All results can be viewed on the project’s GitHub repository
[18].

5 Discussion
To answer our first research question, we can state that some
open source accessible supervised Machine Learning models
perform very well on the crime prediction task of New York
City between 1st of July 2012 and 30th of June 2013. Some
of the tested model in table 3, namely GradientBoostingRe-
gressor and RandomForestRegressor, performed very well
on the provided data consisting of public complaints, public
security and human mobility data. These two outperformed
the dummy predictor used for evaluation significantly, but
other models tested in table 3 performed worse than the
dummy predictor, implying that they are not successfully
applicable on this task. The highest performing model, Gra-
dientBoostingRegressor, according to our result table 3, was
also the model that performed the best for the classification
task of crime prediction in San Francisco [1]. They were able
to get an accuracy ranging between 70 and 90 % without
incorporating any spatio-temporal correlations, suggesting
that our results could feasible since our model have access to
other kinds of information. However, an accuracy of around
99,99% typically imply overfitting the data or some other
error. Two ways to reduce the risk of overfitting are to either
adding more data, or to apply cross-validation. Adding more
data concerning the examined time period and location was
in this case not feasible due to the date and time range limita-
tions. Some ways of cross-validation have been applied, with
both train_test_split as well as ShuffleSplit, but no
actual understanding regarding if the models are overfitted
or not have been collected from it.

One reason for the very high performance of our models
could be that the selected data sources were the optimal ones
in terms of what features to consider and their correlation to
the actual crime rate, and the remaining features in the base-
line paper are merely noise making it harder for the models
to predict with a high accuracy. The selection process of
what data sources to use compared to the baseline paper
[19] was based on what data was accessible online. However,
since the data differs between the baseline paper and our
implementation, it is difficult to assess the improvement we
have managed to create in this task of crime prediction for
New York City to the feature extraction process or the actual
models themselves.

Moreover, both the baseline paper [19] as well as the research
on crime prediction in Baltimore [2] stated that taking a too
big lag would decrease the accuracy. Both papers suggested

using a 5-day lag, compared to the lag of 7-day we used in
our data. By looking at our results in 3, a longer lag outper-
formed the results of the shorter one. A 7-day lag correspond
to the same day the week before, implying that temporal
correlations might be stronger for a weekly period than a
daily one. According to research on Baltimore [2], a 7-day
lag led to a slight overfitting of the model, something that
could be a reason for our startling results.

Regarding our second research question, most features used
in our data seem to be important by comparing the tables
3 and 5. If the lag = 1-day, having both all the SAF and all
311 features seem superfluous, as the accuracy does not de-
crease and the features are highly correlated. If storage is an
issue and/or limitation, removing all taxi features could be
considered based on deduction of total number of features
examined with the negligible increase in aRMSE. Finally, by
removing the lag features, the aRMSE seem to decrease even
further. This implies that the temporal correlations in this
case could in fact be superfluous and becoming noise for the
model.

5.1 Research suggestions
With the numerical form of our dataset, it would be simple
to apply other models that were not tested in this project.
Since the data used in the baseline paper is not available,
we cannot state anything about the transferability of their
data and how well other models would perform on their
data. Therefore we propose further research to continue by
attempting to test their data on the same models we cho-
sen as well as testing the TCP framework on our data. By
investigating this, it is possible to state if the performance
improvement found in this project stems from a more opti-
mal preprocessing and data selection, or the TCP framework
merely being overcomplicated.

One other thing that was discovered during tuning of the
model, was that applying a StandardScaler sometimes de-
creased the performance of the models, which seems counter-
intuitive. Another proposition is to implement and test other
dummy regressors, such as for example taking the mean of
some previous and upcoming days NYPD value as prediction
for the examined day, or applying a probabilistic distribution,
for e.g. the Gaussian distribution and see how well it would
perform. Finally, it would be interesting to add more data
into our models to see if that would increase or decrease the
performance of the models, giving a direction of whether
the data sources in the baseline paper [19] were valuable or
increasing complexity and noise.

6 Conclusions
By incorporating spatio-temporal relationships to the task of
predicting the crime rate of New York City, surprisingly good
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results can be expected using GradientBoostingRegressor
and RandomForestRegressor. Some of the data used for this
task; namely public complaints, public security and taxi data
seem to be redundant in some cases for a shorter time lag
if all other features remain. No extensive comparison to
the baseline paper [19] is possible, making it hard to detect
potential flaws with our preprocessing of the used data used.
Based on the previously mentioned results, our contributions
with this project are:

• Only taking the closest neighbouring values (North,
West, South and East) and the values from the same re-
gion for a lag l is indeed a feasible way to incorporate
spatio-temporal correlations into the model.

• GradientBoostingRegressor and RandomForestRegres-
sor could be high performing open source Machine
Learning models applicable on crime prediction tasks
incorporating spatio-temporal data.

• The sameweekday last week have a higher correlation
to the crime rate of today compared to yesterday for
this data of New York City.

• The spatial correlations does seem to be more impor-
tant the temporal correlations considering the change
in aRMSE. This change however, is still extremely
small and an indication of an possibly overfittedmodel.

But like previously mentioned, the highest performing
models of our results does have an abnormally high accuracy,
implying that they could be prone to overfitting the data.
This is strongly encouraged to examine further by applying
similar data sources to the models for other tasks, i.e. other
years of crime prediction in other cities.
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